
Analysis of Verifiability in Electronic Voting

Mark Ryan
University of Birmingham

based on joint work with

Ben Smyth
Steve Kremer

Mounira Kourjieh

VOTE-ID, Luxembourg, 2009

Thanks for the pic: Ben Smyth / Cătălin Hriţcu

Election verifiability

verifiability

Election verifiability

verifiability
auditability

Election verifiability

end-to-end

{
verifiability
auditability

Election verifiability

end-to-end

{
verifiability
auditability

Election results can be fully verified by voters/observers

The software provided by election authorities does not need to be
trusted

The software used to perform the verification can be sourced
independently

Sign the Accord

Signer details

iav oss.org

History

Electronic voting

FOO [Fujioka/Okamoto/Ohta 92]

Civitas
[Juels/Catalano/Jakobsson 05]

[Clarkson/Chong/Myers 08]

Helios [Adida 08]

[Adida/deMarneffe/Pereira/Quisq. 09]

|

|

|

|

|

|

|

|

|

|

|

Paper-and-scan

Visual crypto [Chaum 04]

Prêt-à-Voter
[P.Ryan/Schneider/Chaum 05]

Punchscan
[Chaum/Clark/Popoveniuc 06]

ThreeBallot [Rivest 06]

Election of president at University of Louvain

The election

Based on Helios

but many modifications

25,000 potential voters

5000 registered, 4000 voted
Educated, but not technical

30% voters checked their vote

No valid complaints

erifiability

Anyone can write code to verify
the election
Sample python code provided

No coercion
resistance

Only
recommended
for
low-coercion
environments

Re-votes are
allowed, but
don’t help
w.r.t. “insider”
coercer

[Adida/deMarneffe/Pereira/-

Quisquater 09]

OPEN-AUDIT OF THE RESULTS OF THE
RECTOR ELECTION 2009

The voting system used for this election provides
universally verifiable elections. This means that:

a voter can verify that her ballot is cast as intended (her
ballot reflects her own opinion),

1.

a voter can verify that her ballot is included unmodified
in the collection of ballots to be used at tally time,

2.

anyone can verify that the election result is consistent
with that collection of ballots.

3.

UCL - Audit des résultats de l'élection file:///home/mdr/tmp/election.uclouvain.be/audit-en.html

1 of 1 26/08/09 12:09

|

|

|

|

|

|

|

|

|

|

|

Election verifiability

Individual
verifiability

A voter can
check her own
vote is included
in the tally.

Universal
verifiability

Anyone can
check that the
declared
outcome
corresponds to
the tally.

Eligibility
verifiability

Anyone can
check that only
eligible votes are
included in the
declared
outcome.

Remarks

Verifiability 6= correctness

What system components need to be trusted in order to carry out
these checks?

Formalisation of election verifiability

Formalisation of election verifiability

Analysis of systems:

FOO

JCJ/Civitas

Helios/UCL [in progress]

The applied π-calculus

Applied pi-calculus: [Abadi & Fournet, 01]

basic programming language with constructs for concurrency and
communication

based on the π-calculus [Milner et al., 92]

in some ways similar to the spi-calculus [Abadi & Gordon, 98],
but more general w.r.t. cryptography

Advantages:

naturally models a Dolev-Yao attacker

allows us to model less classical cryptographic primitives

both reachability-bases and equivalence-based specification of
properties

automated proofs using ProVerif tool [Blanchet]

powerful proof techniques for hand proofs

successfully used to analyze a variety of security protocols

Equations to model the cryptography: examples

1 Encryption and signatures

decrypt(encrypt(m,pk(k)), k) = m

checksign(sign(m,k), m, pk(k)) = ok

2 Blind signatures

unblind(sign(blind(m,r), sk), r) = sign(m,sk)

3 Designated verifier proof of re-encryption
The term dvp(x,renc(x,r),r,pkv) represents a proof designated for the
owner of pkv that x and renc(x,r) have the same plaintext.

checkdvp(dvp(x,renc(x,r),r,pkv),x,renc(x,r),pkv) = ok

checkdvp(dvp(x,y,z,skv), x, y, pk(skv)) = ok.

4 Zero-knowledge proofs of knowledge
pf(k,x,y) represents proof that I know k such that dec(x,k)=y.

checkpf(pf(k,x,dec(x,k)), x, dec(x,k)) = ok.

Coding protocols as processes

Example ([FOO’92]):

processV =

new b; new c;

let bcv = blind(commit(v,c),b) in

out(ch, (sign(bcv, skv)));

in(ch,m2);

if getMess(m2,pka)=bcv then

let scv = unblind(m2,b) in

str phase 1;

out(ch, scv);

in(ch,(l, =scv));

str phase 2;

out(ch,(l,c)).

Alice aDministrator Collector

{ } 1)),,((−Abcvcommitblind

{ } 1)),,((−Dbcvcommitblind

{ } 1),((...) −= Dcvcommitunblind

{ } 1),(−Dcvcommit

vpubl.

)),(,(. cvcommitlpubl
),(cl

I

III

II

vopen =(...)

Formalisation of privacy-type properties

Definition (Privacy)

A voting protocol respects privacy if
S [VA{a/v} | VB{b/v}] ≈`

S [VA{b/v} | VB{a/v}]

Definition (Receipt-freeness)

A voting protocol is receipt-free if
there exists a process V ′, satisfying

V ′\out(chc,·) ≈` VA{a/v},
S [VA{c/v}chc | VB{a/v}] ≈`

S [V ′ | VB{c/v}].

Definition (Coercion resistance)

VP is coercion resistant if there
exists a process V ′ such that for any
C = νc1.νc2.(| P) satisfying

ñ ∩ fn(C) = ∅
S [C [VA{?/v}c1,c2] |
VB{a/v}] ≈` S [VA{c/v}chc |
VB{a/v}]

we have

C [V ′]\out(chc,·) ≈` VA{a/v},
S [C [VA{?/v}c1,c2] |
VB{a/v}] ≈` S [C [V ′] |
VB{c/v}].

[Delaune/Kremer/Ryan 08]

Election verifiability

We suppose that the protocol
involves

Voter credentials (typically, a
public part and a private part
for each voter)

A bulletin board, on which
are placed entries
corresponding to voter’s
outputs.

Election verifiability

A protocol satisfies election
verifiability if

Each voter’s credentials are
unique

Each voter’s bulletin board
entry is unique

There are tests R IV , RUV

and REV satisfying certain
acceptability conditions.

Individual verifiability

Intuition: a protocol satisfies individual verifiability if there is a test

R IV
(
my vote , my data , bb entry

)
that a voter can apply after the election.

The test succeeds iff the bulletin board entry corresponds to the voter’s
vote and data.

Acceptability conditions for R IV

For all votes s, there is an execution of the protocol that produces
M̃ such that some bulletin board entry T satisfies R IV (s, M̃,T).

The bulletin board entry determines the vote, that is:

∀s, t, M̃, Ñ,T
(

R IV (s, M̃,T) ∧ R IV (t, Ñ,T)⇒ s = t
)

Universal verifiability

Intuition: a protocol satisfies universal verifiability if there is a test

RUV
(
declared outcome , bb entries , proof

)
that an observer can apply after the election.

The test succeeds iff the declared outcome is correct w.r.t. the bb entries
and the proof.

Acceptability conditions for RUV

T̃ determines s̃, that is,

RUV (s̃1, T̃ , p1) ∧ RUV (s̃2, T̃ , p2)⇒ s̃1 = s̃2

The observer opens the bb entry the same way as the voter:

R IV (s, M̃,T) ∧ RUV (s̃, T̃ , p′)⇒ ∃p′.RUV (s̃ ◦ s, T̃ ◦ T , p′)

“Pointwise” universal verifiability

In some cases, the proof may be a bijection p : n→ n such that

RUV (s̃, T̃ , p) =
n∧

i=1

RUV
• (si ,Tp(i))

This is the case for FOO and JCJ/Civitas, but not for Helios/UCL.

In this case, the verification is slightly simpler:

Equivalent acceptability conditions for RUV
•

RUV
• (s,T) ∧ RUV

• (t,T)⇒ s = t

R IV (s, M̃,T)⇒ RUV
• (s,T)

This is the case we have implemented, although the more general case is
probably straightforward.

Eligibility verifiability

Intuition: a protocol satisfies eligibility verifiability if there is a test

REV
(
public credentials , bb entries , proof

)
that an observer can apply after the election.

Again, for some protocols, the proof may consist of a bijection p : n→ n
that allows the verifier to perform the test pointwise:

Acceptability conditions for REV
• :

REV
• (U,T) ∧ REV

• (V ,T)⇒ U = V

If voter voting s with credential U and voting data M̃ generates
bulletin board entry T , then

R IV (s, M̃,T)⇔ REV
• (U,T)

Election verifiability

A voting process C [!νã.(P | Q[c〈U〉])] satisfies election verifiability if
voter’s credentials and bulletin board entries are unique and there exists
tests R IV ,RUV ,REV with

fv(R IV) ⊆ bv(P) ∪ {v , z}
fv(RUV) ⊆ {v , z}
fv(REV) ⊆ {y , z}
(fn(RUV) ∪ fn(REV)) ∩ bn(P) = ∅

such that the augmented voting process satisfies the following conditions:

the unreachability assertion: fail〈true〉.
the reachability assertion: pass〈true, x〉.

Augmented process

Given a voting process C [!νã.(P | Q[c〈U〉])] and tests R IV ,RUV ,REV ,
the augmented voting process is

νb.(C [!νã, b′.(P̂ | Q̂)] | R | R ′) | R ′′ | R ′′′

where

P̂ = b(v).P.c(z).b′(y).(pass〈R IV , z〉 | fail〈ψ〉)
Q̂ = Q[b′〈U〉 | D〈U〉 | c〈U〉]
R = !νs.((!b〈s〉) | c〈s〉)
R ′ = b(v ′).b(v ′′).c(x ′).c(x ′′).c(y ′).c(y ′′).c(z ′).fail〈φ′ ∨ φ′′ ∨ φ′′′〉
R ′′ = pass(e).pass(e′).fail〈e1 ∧ e′1 ∧ (e2 = e′2)〉
R ′′′ = D(e).D(e′).fail〈¬(e = e′)〉

ψ = (R IV ∧ ¬RUV) ∨ (R IV ∧ ¬REV) ∨ (¬R IV ∧ REV)

φ′ = R IV {v ′,x̃′,z′
/v ,x̃,z} ∧ R IV {v ′′,x̃′′,z′

/v ,x̃,z} ∧ ¬(v ′ = v ′′)

φ′′ = RUV {v ′,z′
/v ,z} ∧ RUV {v ′′,z′

/v ,z} ∧ ¬(v ′ = v ′′)

φ′′′ = REV {y ′,z′
/y ,z} ∧ REV {y ′′,z′

/y ,z} ∧ ¬(y ′ =E y ′′)

Case study: FOO

Bulletin board entries are of the form

z ′ = (`, com, sig) and z = (`, com, sig , rand , vote).

Individual verifiability

R IV = eq(z , 〈z ′1, commit(v , r), unblind(y ′, r ′), r , v〉) ∧
checksign(z ′3, z

′
2, pk(skR))

Universal verifiability

RUV = eq(z2, commit(z5, z4)) ∧ checksign(z3, z2, pk(skR)) ∧ eq(z5, v)

Eligibility verifiability

Not satisfied.

Case study: JCJ/Civitas

Voter Registrar Tallier
k <· · ·> U = penc(k, r ′′, pk(skT))

(M,M′,spkF)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
z=(spkF ,spkF ′ ,petKey)−−−−−−−−−−−−−−→

where

M = penc(s, r , pk(skT))

M ′ = penc(k , r ′, pk(skT)).

spkF = proof that M,M ′ are properly constructed

spkF ′ = proof that decryption by Tallier properly performed

petKey = PET key demonstrating that M ′ and U have same
plaintext

Case study: JCJ/Civitas

Individual verifiability

R IV = φ′ ∧ eq(z1, spk4,3+l((v , r , k , r ′), (M,M ′, pk(skT), s1, . . . , sl),F))

Universal verifiability

RUV
• = φ ∧ eq(dec(public2(z2), public1(z2)), v)

Eligibility verifiability

REV
• = φ′ ∧ ver4,3+l(F , z1)

where

φ = ver1,2(F ′, z2) ∧ eq(public1(z1), public2(z2))
φ′ = φ ∧ pet(y , public2(z1), z3))

Case study: Helios/UCL

Work in progress; caused us to generalise RUV , REV to non-pointwise
case.

Individual verifiability

Straightforward.

Universal verifiability

Probably straightforward :-)

Eligibility verifiability

Not satisfied.

Results and trustworthiness requirements

Property FOO’92 Civitas ’08 Helios/UCL ’09

Vote-privacy X X X
trusted compnts client client client

Receipt-freeness × X ×
trusted compnts client

Coercion resist. × X ×
trusted compnts client

Individual verif. X X X
trusted compnts client client client

Universal verif. X X X
trusted compnts

Elig. verif. × X ×
trusted compnts

Conclusions and future work

Conclusions

First generic formal
definitions of election
verifiability.

Suitable for automation.

Automatic verification for
PostalBallot, FOO, Civitas.

Future work

Completion of homomorphic
cases (Helios/UCL)

Voting systems that are not
client-crypto-based.

	Voting system properties
	Election verifiability
	Applied pi calculus
	Conclusions

